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COMMENT 
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Abstract. The well known Sierpinski gasket has been generalised by us into the generalised 
Pascal-Sierpinski gaskets (GPSG) of orders ( K ,  L), where both K and L are 3 2 .  It has 
been shown here that families of self-similar sequences can be derived from these extensions 
of the Sierpinski gasket when K = 2 and L is a prime number. 

In a recent communication (Lakhtakia et a1 1987), we have described a bi-indexed 
family of fractal planar gaskets which are derivable from the Pascal triangle, and 
named them the generalised Pascal-Sierpinski gaskets (GPSG) of order ( K ,  L ) ,  where 
both K and L 3 2. It has been shown that the only members of this family which are 
strictly self-similar are those known as the Pascal-Sierpinski gaskets ( PSG) (Holter et 
a1 1986) of orders (2, L )  where L is a prime; the remaining GPSG are only self-affine. 
We have shown that for the PSG of order L prime, a fractal (similarity) dimension dL 
given by 

d ,  = log( 1 + 2 + .  . . + L)/log(L) (1) 

can be prescribed. To be noted is the fact that the GPSG of order (2,2) is the usual 
Sierpinski gasket (Mandelbrot 1983) and that of order (2,3) is a gasket described by 
Bhattacharya (1985). In what follows we shall concentrate on the GPSG of orders (2, 
L prime). 

The self-similar GPSG can be described in terms of the spatial convolution operations 
(Goodman 1968); these gaskets possess a scale factor, also of L. As such, it makes 
sense for us to truncate the gasket when the number of rows is an integral power of 
L, i.e. we define levels of evolution E 3 1, each level containing the first LE+'  rows; 
the fundamental level is given by E = 1. We have also defined a mathematical rep- 
resentation for each level by the function f E ( x ,  y ;  L )  which can be generated using the 
relation 

f E ( x , y ;  L ) = f E - , ( x , Y ;  L ) * g E ( x , y ;  L )  (2) 

where * denotes a convolution (Goodman 1968), the array factor g , ( x ,  y ;  L )  being 
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given as 
L p - l  

g E  ( X ,  y ;  L )  = [ 6{ x - ( p - l ) L E a ,  y - qLE6} + 6 { x  - ( p - 1 )  LEa, J’ + qLE6}]  

p-1  

p = 3 , 5  ,... q = 2 , 4  ,... 

+ f c [ S { x  - ( p  - l ) L E a ,  y - qLEb} 
p = 2 , 4 , 6  ,... q = 1 . 3 , 5  ,... 

+ 6 { x - ( p - 1 ) L E a , ~ + q L E b } ]  

In (3), S { x - x ’ ,  y - y ‘ }  is the Dirac delta function; while a as well as b are the length 
parameters of the triangular grid over which the gasket is constructed (Lakhtakia et 
a1 1986a). Elsewhere (Holter er al 1986) can be found illustrations of some of the 
resulting structures. What turned out to be quite interesting, however, was that not 
all attributes of these gaskets are necessarily self-similar: thus, Hilbert curves, drawn 
in a specific manner on these gaskets, are only self-affine and dL is merely the asymptotic 
topological dimension of these curves (Lakhtakia et a1 1986b). 

It is obvious that the gaskets described above are fractals in space, with their spatial 
(similarity) dimensions lying between log(3)/log( 2 )  and 2, i.e. 

log( 3)/10g( 2 )  dL 2 L prime (4) 

with dL increasing as L does. But, as has been noted chiefly by Shlesinger (1986),  there 
is no reason why fractals cannot exist in time as well. In fact, we will now show that 
the GPSG of orders (2, L prime) give rise to fractal sequences which can have importance 
in time domain problems, such as for data encryption applications or for constructing 
hard wall diffusors (Schroeder 1986). 

For that purpose let n = 1 , 2 , 3 , .  . . be the row number of GPSG, and let t [ n ;  L ]  be 
the total number of nodes contained in the first n rows; then { t [ n ;  L]} is a sequence 
obeying the power law 

with ** denoting exponentiation, i.e. u**p = up.  It should be noted that the sequence 
{ t[ n ;  L ] }  is completely specified by only a few of its members. First of all, t[ 1; L]  and 
t [ L ;  L ]  are inter-related as per 

t [ L .  n ;  L ] = ( L * * d L )  t [ n ;  L ]  ( 5 )  

r[L; L ]  = t [ L  a 1; L ]  = (L**dL)  9 r [ l ;  L]. ( 6 a )  
On noting that t[l; L ]  = 1 and using ( l ) ,  it can be easily seen that ( 6 a )  transforms to 

t [ L ;  L ] =  L * * d L = L ( L + 1 ) / 2 .  ( 6 6 )  
Further specification of the sequence { t[ n ;  L ] }  also comes from defining t [  m ;  L ]  for 
all m which are relatively prime to L;  i.e. for m = 2 , 3 , 4 , .  . . , L - 2 ,  L -  1 ,  as well as 
for all m > L which do not have L as one of their prime divisors. As L increases, an 
increasingly larger number of such specifications become necessary. Once these 
specifications have been made, the sequence { t [ n ;  L ] }  is completely determined: this 
is because for all integers which have L as one of their prime divisors, (5) provides for 

t[Lq.m;L]=(L**(q.dL)).t[m;L] q = 1 , 2 , 3 ,  . . . ( 7 )  
given that m and L have 1 as their greatest common divisor. In fractal parlance, the 
numbers t [ m ;  L ] ,  such that either m = 1 or m and L are relatively prime, are the 
initiators of the sequence { r [ n ;  L ] } ;  while the power law ( 7 )  serves as its generator. 
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It is illuminating to give the first few members of some of the sequences so generated. 
First, for L = 2, the sequence is given as 

1 , 3 , 5 , 9 ,  1 1 ,  1 5 ,  19,27,29,33,37,45,49,57,65,81,83,87,91,99, 103, 1 1 1 ,  119, 135, 

139,147,155,171,179,195,211,243,.  . . ( L = 2 ) .  ( 8 a )  

It is a simple matter to verify that this sequence satisfies the requirements of a fractal 
sequence. Its fractal nature is even more transparently seen through the sequence 

11212,412,4,4,812,4,4,8,4, 8, 8, 1612,4 ,4 ,8 ,4 ,8 ,8 ,  1 6 , 4 , 8 , 8 ,  16,8, 16, 16,321..  . 

( L = 2 ) .  (86)  

The sum of the first n members of the sequence (8b)  equals the nth member of the 
fractal sequence (8a ) .  It should be noted that (86)  is aperiodic; however, it has been 
partitioned by the separators I in order to bring out its character. The string of characters 
enclosed between two consecutive separators is precisely twice, and  in the same order 
as, the string of all numbers to the left of the left separator. 

1 ,3 ,6 ,  8, 12, 18 ,21 ,27 ,36 ,38 ,42 ,48 ,  52 ,60 ,72 ,78 ,90 ,  108, 1 1 1 ,  117, 126, 132, 

Similarly, the fractal sequence for L = 3 is found to be 

144,162,171,189,216,.  . . ( L = 3 ) .  (9a  

Corresponding to (8b),  the sequence of successive differences is given as 

112; 3 /2 ,4 ,6 ;  3 ,6 ,912 ,4 ,6 ,4 ,  8, 12,6,  12, 18; 3 , 6 , 9 , 6 ,  12, 18,9,  18,271..  . ( L = 3 )  
(96  

This time, the use of two separators ( 1  and ;) is necessary to reveal the structure of 
(9b).  Thus between the separators 1, the sequence ( 8 b )  appears as 1{5}; {&}I ;  it should 
be noted that the sequence ( 5 )  is twice the string of numbers preceding the left separator 
1, while the sequence {&} is three times the same string. Sequences similar to (8a, b) 
and (9a, b) also exist for the higher primes L as well. 

Furthermore, the sequence { t [ n ;  L]}, for given L, can itself be partitioned into 
sub-sequences which are strictly self-similar. For any m # 0 such that t [  m ;  L] # 0 as 
well, and  the greatest common divisor of m and L equals unity, the sequence 
{ s [ n ;  m ;  L]} given by the relations 

s [ n ;  m ;  L] = t [ n ;  L] if n = m L 4 , q = 0 , 1 , 2 , 3  , . . .  

= O  otherwise (10) 

is itself self-similar with the fractal (similarity) dimension dL.  As examples, consider 
the sequence 

~ ,3 ,0 ,9 ,0 ,0 ,0 ,27 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,81 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,243 , .  . . 

which is derived from ( 8 a )  with m = 2  and L = 2 ,  and the sequence 
( 1 1 )  

(12) 

which is also derived from ( 8 a )  with m = 3 and L =  2. It should be noted that the 
termwise-except for the first term, which is, of course, always unity-addition of ( 1  1 )  
and (12) also gives a fractal sequence. Of course, the successive members of the 
sequences {s[ n ;  m ;  L ] }  would grow unbounded because d ,  > 1 .  For practial utilisation, 

1 , 0 , 5 , 0 , 0 ,  15 ,0 ,~ ,~ ,0 ,0 ,45 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,  135,.  . . 
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it may be necessary to terminate the parameter q in (10) at some appropriate qmax, 
and some sort of a normalisation procedure may have to be employed. For example, 
d ,  could be multiplied by some number to ensure that the successive non-zero members 
of { s [ n ;  m ;  L ] }  decrease, in which case the similarity dimension of { s [ n ;  m ;  L ] }  would 
also be changed; or the numbers s [ n ;  m ;  L] of the truncated sequence may be used 
to exponentiate exp[2ni] for possible application in the design of arrays (e.g., Schroeder 
1979, 1986). 

This research was supported by the US Air Force Office of Scientific Research. 
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